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Abstract. There has been growing interest in statistical analysis on random objects taking

values in a non-Euclidean metric space. One important class of such objects consists of data on

manifolds. This article is concerned with inference on the Fréchet mean and related population

objects on manifolds. We develop the concept of nonparametric likelihood for manifolds and

propose general inference methods by adapting the theory of empirical likelihood. In addition

to the basic asymptotic properties, such as Wilks’ theorem of the empirical likelihood statistic,

we present several generalizations of the proposed methodology: two-sample testing, inference

on the Fréchet variance and local Fréchet regression, quasi Bayesian inference, and estimation

of the Fréchet mean set. Simulation and real data examples illustrate the usefulness of the

proposed methodology and advantage against the conventional Wald test.

1. Introduction

With increasing availability of more complex data as a background, there has been growing
interest in statistical analysis on random objects taking values in a non-Euclidean metric space
which may not have algebraic structures; see e.g. Marron and Alonso (2014) for a survey.
Examples include data on a circle or sphere, directional data, functional data, and correlation
matrices, among others, and one of the most important and well-studied classes of such random
objects consists of data on Riemannian manifolds. We refer to Patrangenaru and Ellingson
(2015) for an overview of statistical methods on manifolds.

Since Fréchet (1948), statistical theory on manifolds has been widely studied, and perhaps
one of the most fundamental concepts in this theory is the Fréchet mean, which is a direct
generalization of the standard population mean to a non-Euclidean metric space. To conduct
statistical inference on the Fréchet mean or its variants, various methodologies analogous to the
conventional Euclidean data analysis have been developed in the literature; see Bhattacharya
and Patrangenaru (2014) for a survey.

In this article, we develop a nonparametric likelihood concept for the Fréchet mean and re-
lated population objects for data on manifolds, and propose general inference methods (for
hypothesis testing and confidence set estimation) by adapting the methodology of empirical like-
lihood (Owen, 2001). In particular, by exploiting the locally Euclidean structure of Riemannian
manifolds, we characterize estimating equations for generalized sample Fréchet means via the
associated exponential maps, and construct the empirical likelihood function based on those
equations. We study the asymptotic properties of the empirical likelihood statistic and establish
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Wilks’ theorem, convergence of the empirical likelihood statistic to a chi-squared distribution.
Furthermore, we propose a plug-in empirical likelihood statistic to deal with composite null
hypotheses and describe how to compute critical values by the bootstrap.

A conventional approach for inference (i.e., hypothesis testing and confidence set estimation) of
the Fréchet mean on manifolds is the Wald test based on the central limit theorem for the sample
Fréchet mean (Bhattacharya and Patrangenaru, 2003 and 2005, Bhattacharya and Lin, 2017).
Eltzner and Huckemann (2019) generalized the central limit theorem to a smeary case, where
the Hessian of the Fréchet function (i.e., the criterion function to compute the sample Fréchet
mean) may be singular. As argued in Eltzner and Huckemann (2019) and Eltzner (2022), the
smeary case is practically relevant in manifold data analysis since it is difficult to determine
with certainty whether the underlying variable exhibits smeary behavior in certain datasets,
such as paleomagnetic data used in our real data example. In such situations, inference on the
Fréchet mean has to be treated with great care. Additionally, in the presence of smeariness, the
convergence rate and limiting distribution of the sample Fréchet mean depend on (non)singularity
of the Hessian of the Fréchet function so that the Wald inference becomes non-trivial. A notable
feature of our empirical likelihood approach is as follows. When we test a simple null hypothesis
or construct a confidence region for the Fréchet mean, it does not involve any condition on
(non)singularity of the Hessian of the Fréchet function, so is asymptotically valid regardless of
the degree of smeariness. Moreover, If researchers are interested in the inference of the Fréchet
median (a generalization of the standard population median and an important population object
as well as the Fréchet means), it can be observed that the Wald test may lack theoretical validity
even when the underlying distribution does not exhibit smeariness. Indeed, in our simulation
study, we compare the finite sample performance of the empirical likelihood and Wald tests for
the Fréchet mean and median when the observations are generated from a von Mises-Fisher
distribution on the two-dimensional sphere and find that for the Fréchet median, the Wald
test shows severer size distortion but the empirical likelihood test works well. This result is
attributed to the singularity of the Hessian matrix of the Fréchet function corresponding to the
Fréchet medians. See Section 4 for details on the simulation results.

Based on these benchmark results, we generalize our empirical likelihood approach to several
contexts of manifold data analysis. First, we extend the plug-in empirical likelihood statistic to
two-sample testing of the Fréchet means. This extension is useful to compare different samples
on manifolds. Second, our method can accommodate other population objects on manifolds.
In particular, we propose a plug-in empirical likelihood statistic for the Fréchet variance, which
is also of interest to investigate random objects including manifold data (see, e.g., Dubey and
Müller, 2019 and 2020). Third, we argue that our empirical likelihood can serve as a quasi
likelihood function to conduct quasi Bayesian inference on the Fréchet mean, and we provide
a consistency result of the proposed quasi posterior. Fourth, the notion of the Fréchet mean
has been extended to linear or nonparametric regression contexts (Petersen and Müller, 2019)
and we can also construct a localized version of empirical likelihood to conduct inference on the
conditional Fréchet mean at a value of Euclidean predictors, which complements the estimation
method of local linear Fréchet regression by Petersen and Müller (2019). Fifth, we demonstrate
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that our empirical likelihood function can be employed as a criterion function to construct a set
estimator even when uniqueness of the Fréchet mean is not guaranteed. Limit theorems and
estimation for the Fréchet mean set have been studied by Evans and Jaffe (2020), Blanchard and
Jaffe (2022), and Schötz (2022). This paper provides an alternative estimation strategy. See also
Eltzner (2020) for a test of uniqueness of the Fréchet mean. Finally, we note that all these results
contribute to the literature of empirical likelihood (see, Owen, 2001, for a survey) to broaden its
scope and applicability.

This article is organized as follows. Section 2 introduces the basic setup and presents our
empirical likelihood inference methods for the Fréchet mean. Section 3 discusses several exten-
sions of the empirical likelihood approach for wider applicability. In Sections 4 and 5, simulation
results and real data examples are provided, respectively, to illustrate the proposed method. In
Appendix, we present popular examples of Riemannian manifolds, a description of the Wald test
for simulation, and proofs of the theorems.

2. Empirical likelihood

We first introduce our basic setup. Let P and Q be separable topological spaces and ρ̃ :

P × Q → [0,∞) be a continuous map reflecting distance between a data descriptor p ∈ P and
a datum q ∈ Q. Consider an independent and identically distributed sample {Xi}ni=1 such that
all the Xi have the same distribution as the random object X ∈ Q. Based on the map ρ̃,
the generalized population and sample Fréchet functions are defined as F̃ (p) = E[ρ̃(p,X)] and
F̃n(p) = n−1

∑n
i=1 ρ̃(p,Xi) for p ∈ P, respectively. Then the generalized population and sample

Fréchet means are defined as

Ẽ =

{
p ∈ P : F̃ (p) = inf

q∈P
F̃ (q)

}
, Ẽn =

{
p ∈ P : F̃n(p) = inf

q∈P
F̃n(q)

}
, (1)

respectively. For example, when P = Q is a Riemannian manifold and ρ̃ is the squared geodesic
intrinsic distance, Ẽ and Ẽn are the population and sample Fréchet means, respectively, originally
studied in Fréchet (1948). The population and sample Lq Fréchet means are covered by setting
ρ̃ = dq for some distance d in P. In Appendix A.1, we provide some popular examples of
Riemannian manifolds.

Let ∥ · ∥ be the Euclidean norm. In this section, we impose the following assumptions.

Assumption 1.

(i): {Xi}ni=1 is independent and identically distributed. Ẽ is non-empty and contains a
unique µ ∈ P such that for every measurable selection µn ∈ Ẽn, it holds µn

p→ µ.
(ii): For an integer r ≥ 2, there exists a neighborhood Ũ of µ that is an m-dimensional

Riemannian manifold, i.e., for a neighborhood U of 0 ∈ Rm, the exponential map expµ :

U → Ũ is a Cr-diffeomorphism satisfying expµ(0) = µ.

(iii): g(X,µ) :=
∂ρ̃(expµ(x),X)

∂x

∣∣∣
x=0

exists almost surely, and E[||g(X,µ)||2] < ∞.

Assumptions 1 (i) and (ii), which are identical to Assumptions 2.2 and 2.3 of Eltzner and
Huckemann (2019), respectively, describe our basic setup. See Section A.1 for some examples
of Riemannian manifolds and their exponential maps. Although uniqueness of µ is commonly
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assumed, it is also of interest to conduct inference on the generalized Fréchet mean set Ẽ (Blan-
chard and Jaffe, 2022). In Section 3.5 below, we relax this uniqueness assumption and study
consistent estimation of Ẽ based on our empirical likelihood approach. Assumption 1 (iii) is on
the derivative ∂ρ̃(expµ(x),X)

∂x

∣∣∣
x=0

, and is weaker than Eltzner and Huckemann (2019, Assumption
2.4). In particular, we do not require the Lipschitz condition for ρ̃(expµ(x), X) (Assumption 2.4
(ii) of Eltzner and Huckemann, 2019) nor certain smoothness condition for the Fréchet function
F̃ (p) (Assumptions 2.5 and 2.6 of Eltzner and Huckemann, 2019) to establish a general central
limit theorem for the empirical likelihood statistics allowing smeariness of the descriptor.

If the generalized sample Fréchet mean µn satisfies the first-order condition n−1
∑n

i=1 g(Xi, µn) =

0, then g(X,µ) can be interpreted as estimating functions for µn. Also note that the origin is
the preimage of the generalized population Fréchet mean µ. Therefore, the empirical likelihood
function for µ can be constructed as

ℓ(µ) = −2 max
p1,...,pn

n∑
i=1

log(npi),

s.t. pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

pig(Xi, µ) = 0,

and its dual form obtained by the Lagrange multiplier method is (see, e.g., Ch. 2.9 of Owen,
2001)

ℓ(µ) = 2max
λ

n∑
i=1

log(1 + λ′g(Xi, µ)). (2)

As shown in Theorem 1 (i) below, the empirical likelihood statistic ℓ(µ) can be used to test a
simple null hypothesis on µ and to construct a confidence set for µ. In order to test a composite
null hypothesis on µ, say H0 : µ ∈ P∗ ⊂ P, we add the following assumptions.

Assumption 2.

(i): Ẽ∗ =
{
p ∈ P∗ : F̃ (p) = infp∗∈P∗ F̃ (p∗)

}
is non-empty and contains a unique µ∗ ∈ P∗

such that for every measurable selection µ∗
n ∈ Ẽ∗

n =
{
p ∈ P∗ : F̃n(p) = infp∗∈P∗ F̃n(p

∗)
}
,

it holds µ∗
n

p→ µ∗. For an integer r∗ ≥ 2, there exists a neighborhood Ũ∗ of µ∗ that
is an m∗-dimensional Riemannian manifold, i.e., for a neighborhood U∗ of 0 ∈ Rm∗,
the exponential map exp∗µ∗ : U∗ → Ũ∗ is a Cr∗-diffeomorphism (onto a neighborhood of

P∗) satisfying exp∗µ∗(0) = µ∗. Furthermore, g∗(X,µ∗) :=
dρ̃(exp∗

µ∗ (x),X)

dx

∣∣∣∣
x=0

exists almost

surely, and E[||g∗(X,µ∗)||2] < ∞.
(ii): g∗(X, expµ(·)) is continuously differentiable in a neighborhood N of 0 ∈ Rm∗ almost

surely. E
[
supx∈N

∥∥g∗(X, expµ(x))
∥∥2] < ∞ and E

[
supx∈N

∥∥∥∂g∗(X,expµ(x))

∂x′

∥∥∥2] < ∞. Fur-

thermore, (
1√
n

∑n
i=1 g

∗(Xi, µ
∗)

√
nxn

)
d→ N(0,Σ),

for some positive semi-definite matrix Σ. Note that xn is the preimage of the generalized
sample Fréchet mean µn ∈ P under expµ(·).
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Based on the moment function g∗ defined in Assumption 2 (i), the (dual) empirical likelihood
function for the generalized population Fréchet mean µ∗ on the subspace P∗ is obtained as

ℓ∗(µ∗) = 2max
γ

n∑
i=1

log(1 + γ′g∗(Xi, µ
∗)), (3)

and the plug-in empirical likelihood statistic for testing the composite null hypothesis H0 : µ ∈ P∗

is defined as ℓ∗(µn). Note that µn is the generalized sample Fréchet mean for P. Under H0,
it holds µ∗ = µ and the test statistic ℓ∗(µn) will converge to a limiting distribution shown
in Theorem 1 (ii) below. On the other hand, under the alternative hypothesis, the moment
condition E[g∗(X,µ)] = 0 is violated and ℓ∗(µn) will diverge to infinity.1

The asymptotic properties of the empirical likelihood statistics are obtained as follows.

Theorem 1.

(i): Under Assumption 1, it holds

ℓ(µ)
d→ χ2

m.

(ii): Suppose Assumptions 1 and 2 hold true. Then under H0 : µ ∈ P∗, it holds

ℓ∗(µn)
d→ Z ′V ∗−1Z,

where Z ∼ N

(
0, [Im∗ : G∗′]Σ

[
Im∗

G∗

])
with G∗′ = E

[
∂g∗(X,expµ(x))

∂x′

∣∣∣
x=0

]
and V ∗ =

E[g∗(X,µ∗)g∗(X,µ∗)′].

Based on Theorem 1 (i), hypothesis testing for the simple null hypothesis H0 : µ = µ0 against
H1 : µ ̸= µ0 can be implemented by the rejection rule {ℓ(µ0) > χ2

m,1−α} with the (1 − α)-th
quantile of the χ2

m distribution. Also the empirical likelihood confidence set for the generalized
population Fréchet mean µ is obtained as ELCS1−α = {p ∈ P : ℓ(p) ≤ χ2

m,1−α}. When
ELCS1−α yields disjoint sets, one can select a subset containing the generalized sample Fréchet
mean µn, or more cautiously investigate the values of the sample Fréchet function F̃n(p) in
ELCS1−α to avoid local maxima.

Remark 1. [Bootstrap calibration for ℓ∗(µn)] Theorem 1 (ii) says that the plug-in empirical
likelihood statistic for testing the composite null hypothesis H0 : µ ∈ P∗ is not asymptotically
pivotal. Based on the quadratic approximation of ℓ∗(µn) presented in (8) in Appendix, its null
distribution can be approximated by the bootstrap counterpart

ℓ# = n

(
1

n

n∑
i=1

{g∗(X#
i , µn)− ḡn}

)′

V −1
n

(
1

n

n∑
i=1

{g∗(X#
i , µn)− ḡn}

)
,

where ḡn = 1
n

∑n
i=1 g

∗(Xi, µn), Vn = 1
n

∑n
i=1 g

∗(Xi, µn)g
∗(Xi, µn)

′, and {X#
i }ni=1 is a bootstrap

resample drawn with equal weights from the original sample. By the conventional bootstrap

1An alternative idea is to construct a test statistic ℓ∗(µ∗
n) by plugging-in the estimator µ∗

n under the constraint
of µ ∈ P∗. However, the computation of µ∗

n is more involved than µn, and the derivation of statistical properties
of µ∗

n (especially the limiting distribution) is not trivial. Thus, we focus on the statistic ℓ∗(µn) and leave the
analysis on ℓ∗(µ∗

n) for future research.
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theory, we can see that the (1 − α)-th quantile q#1−α of the bootstrap resamples of ℓ# yields
an asymptotically valid rejection rule {ℓ∗(µn) > q#1−α} of H0 : µ ∈ P∗ under certain additional
requirements, such as E[supµ∈N0

||g(X,µ)||3] < ∞ for some neighborhood N0 around µ∗.

Remark 2. [Robustness of ℓ(µ) against smeariness] It should be noted that Theorem 1 (i) holds
true even if Bhattacharya and Patrangenaru’s (2005) central limit theorem on the preimage

√
nxn

does not hold true due to so-called smeariness, singularity of the Hessian of the Fréchet function
F̃ (p) (see Assumptions 2.5 and 2.6 in Eltzner and Huckemann, 2019). Hundrieser, Eltzner
and Huckemann (2021) proposed a bootstrap approach under their finite sample smeariness
framework. On the other hand, our empirical likelihood inference based on ℓ(µ) is asymptotically
valid regardless of the degree of smeariness.

Remark 3. [Composite hypothesis testing for smeary case] In contrast to ℓ(µ), the plug-in
statistic ℓ∗(µn) is not robust against smeariness, but can be applied if the degree of smeariness is
known or can be consistently estimated. Suppose xn is k-th order smeary with k > 0 in the sense
of Eltzner and Huckemann (2019, Definition 3.3), i.e., n

1
2(k+1)xn

d→ X , where X has a non-trivial
limiting distribution. Then the limiting distribution of ℓ∗(µn) under H0 : µ ∈ P∗ becomes

n− k
k+1 ℓ∗(µn)

d→ X ′G∗V ∗−1G∗′X .

On the other hand, under H1 : µ /∈ P∗, we have 1
nℓ

∗(µn)
p→ E[g∗(X,µ)]′V ∗−1E[g∗(X,µ)] > 0.

Thus, the test with the critical region {n− k
k+1 ℓ∗(µn) > qs1−α} is asymptotically valid and still

consistent, where qs1−α is an estimator of the (1− α)-th quantile of X ′G∗V ∗−1G∗′X .

Remark 4. [Goodness-of-fit testing] Suppose the researcher specifies a parametric distribution
X ∼ p(x, θ) with finite dimensional parameters θ ∈ Rdθ , which implies the Fréchet mean µ(θ).
Then we can adapt the plug-in empirical likelihood approach to construct a goodness-of-fit test
statistic, that is ℓ(µ(θ̂)) with a

√
n-consistent estimator θ̂ of θ. An analogous argument to the

proof of Theorem 1 (ii) (by replacing “
√
nxn” with the influence function of

√
n(θ̂− θ) combined

with suitable smoothness conditions on µ(θ)) yields the limiting distribution of ℓ(µ(θ̂)) and
validity of the bootstrap inference.

Remark 5. [Higher-order refinement] Under additional conditions that require Cramér’s con-
dition and higher moments of g(X,µ), an analogous argument to DiCiccio, Hall and Romano
(1991) implies that the empirical likelihood statistic ℓ(µ) in (2) admits the Bartlett correction
to achieve the coverage error of order O(n−2).

3. Generalizations

The empirical likelihood approach proposed in the last section can be generalized to various
statistical inference problems. Here we discuss extensions for two-sample testing (Section 3.1),
inference on the Fréchet variance (Section 3.2), Bayesian empirical likelihood inference (Sec-
tion 3.3), inference on the local Fréchet mean (Section 3.4), and estimation of the generalized
population Fréchet mean set (Section 3.5).

6



3.1. Two-sample testing. The plug-in empirical likelihood statistic presented in Theorem 1
(ii) can be naturally extended to two-sample testing problems. Suppose we have two independent
random samples {Xi}ni=1 and {X1j}n1

j=1 on the space Q with the generalized Fréchet means µ and
µ1, respectively, and wish to test the equivalence null hypothesis H0 : µ = µ1 against H1 : µ ̸= µ1.
The two-sample plug-in empirical likelihood statistic can be constructed as

L = ℓ(µn) + ℓ1(µn),

where µn is the generalized sample Fréchet mean based on the merged sample {Xi, X1j , : i =

1, . . . , n, j = 1, . . . , n1}, the empirical likelihood ℓ(µ) based on {Xi}ni=1 is defined as in (2), and
the empirical likelihood ℓ1(µ1) based on {X1j}n1

j=1 is defined as ℓ1(µ1) = 2maxλ1

∑n1
j=1 log(1 +

λ′
1g(X1j , µ1)).
The asymptotic property of the two-sample statistic L is obtained as follows.

Assumption 3. Random samples {Xi}ni=1 and {X1j}n1
j=1 are independent and satisfy Assump-

tion 1. g(X, expµ(·)) is continuously differentiable in a neighborhood N of 0 ∈ Rm almost

surely. E
[
supx∈N

∥∥g(X, expµ(x))
∥∥2] < ∞ and E

[
supx∈N

∥∥∥∂g(X,expµ(x))

∂x′

∥∥∥2] < ∞. Furthermore,

as n, n1 → ∞ with n1/n → ρ ∈ (0,∞),
1√
n

∑n
i=1 g(Xi, µ)

1√
n1

∑n1
j=1 g(X1j , µ1)

√
n+ n1xn

 d→

 Z
Z1

Zx

 ∼ N(0,ΣL), (4)

for some positive semi-definite matrix ΣL where xn is the preimage of µn.

The conditions on the moment functions are concerned to control the local behavior of the
plug-in empirical likelihood statistics. The condition in (4) requires that the preimage xn is
asymptotically normal, which excludes the case where the two samples stem from distributions
with different orders of smeariness but possibly equal mean. It is possible to weaken the condition
in (4) to allow smeariness but we focus on the standard situation to simplify our theoretical
analysis. The two-sample test would be more sensitive to the presence of smeariness compared
to the one-sample test.

Theorem 2. Suppose Assumption 3 holds true. Then under H0 : µ = µ1, it holds

L
d→ (Z + (1 + ρ)−1/2G′Zx)

′V −1(Z + (1 + ρ)−1/2G′Zx)

+(Z1 + ρ1/2(1 + ρ)−1/2G′Zx)
′V −1(Z1 + ρ1/2(1 + ρ)−1/2G′Zx),

as n, n1 → ∞ with n1/n → ρ ∈ (0,∞), where G′ = E
[
∂g(X,expµ(x))

∂x′

∣∣∣
x=0

]
and V = E[g(X,µ)g(X,µ)′].

Although the limiting distribution of L is not pivotal, it can be approximated by a bootstrap
procedure. The bootstrap counterpart of L is obtained as
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L# = n

(
1

n

n∑
i=1

{g(X#
i , µn)− ḡn}

)′

V −1
n+n1

(
1

n

n∑
i=1

{g(X#
i , µn)− ḡn}

)

+n1

 1

n1

n1∑
j=1

{g(X#
1j , µn)− ḡ1n1}

′

V −1
n+n1

 1

n1

n1∑
j=1

{g(X#
1j , µn)− ḡ1n1}

 ,

where ḡn = 1
n

∑n
i=1 g(Xi, µn), ḡ1n1 = 1

n1

∑n1
j=1 g(X1j , µn),

Vn+n1 = 1
n+n1

{∑n
i=1 g(Xi, µn)g(Xi, µn)

′ +
∑n1

j=1 g(X1j , µn)g(Xj , µn)
′
}

, and {X#
i }ni=1 and {X#

1j}
n1
j=1

are bootstrap resamples drawn with equal weights from the merged original sample {Xi, X1j , :

i = 1, . . . , n, j = 1, . . . , n1}. Then the two-sample test for H0 : µ = µ1 can be implemented
by the rejection rule {L > q#L,1−α}, where q#L,1−α is the (1 − α)-th quantile of the bootstrap
resamples of L#.

3.2. Inference on Fréchet variance. Our empirical likelihood approach on the Fréchet mean
can be extended to conduct inference on other population objects for manifolds. For example,
researchers might be also interested in the Fréchet variance ϕ = E[ρ̃(µ,X)] in addition to the
Fréchet mean (e.g., Dubey and Müller, 2019). In this case, by incorporating the estimating
function ρ̃(µ,X)−ϕ for the Fréchet variance, the empirical likelihood function for the pair (µ, ϕ)
can be constructed as

ℓJ(µ, ϕ) = −2 max
p1,...,pn

n∑
i=1

log(npi),

s.t. pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

pig(Xi, µ) = 0,
n∑

i=1

piρ̃(µ,Xi) = ϕ,

whose dual form is ℓJ(µ, ϕ) = 2maxλJ

∑n
i=1 log(1 + λ′

JgJ(Xi, µ, ϕ)) with
gJ(Xi, µ, ϕ) = (g(Xi, µ)

′, ρ̃(µ,Xi)− ϕ)′.
An analogous argument to Theorem 1 (i) yields Wilks’ theorem, ℓJ(µ, ϕ)

d→ χ2
m+1, which can

be used to conduct inference on the pair (µ, ϕ). When the Fréchet mean µ is a nuisance object,
we can employ the plug-in statistic ℓJ(µn, ϕ) for ϕ, and its asymptotic property is presented as
follows.

Theorem 3. Suppose Assumptions 1 (i) and (ii) hold true. Furthermore, assume that

(i): gJ(X,µ, ϕ) exists almost surely, and E[||gJ(X,µ, ϕ)||2] < ∞.
(ii): gJ(X, expµ(·), ϕ) is continuously differentiable in a neighborhood N of 0 ∈ Rm almost

surely. E
[
supx∈N

∥∥gJ(X, expµ(x), ϕ)
∥∥2] < ∞ and E

[
supx∈N

∥∥∥∂gJ (X,expµ(x),ϕ)

∂x′

∥∥∥2] < ∞.

Furthermore, (
1√
n

∑n
i=1 gJ(Xi, µ, ϕ)
√
nxn

)
d→ N(0,ΣJ),

for some positive semi-definite matrix ΣJ . Then

ℓJ(µn, ϕ)
d→ Z ′

JV
−1
J ZJ ,
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where ZJ ∼ N

(
0, [Im+1 : G

′
J ]ΣJ

[
Im+1

GJ

])
with G′

J = E
[
∂gJ (X,expµ(x),ϕ)

∂x′

∣∣∣
x=0

]
and VJ =

E[gJ(X,µ, ϕ)gJ(X,µ, ϕ)′].

Since the proof of this theorem is similar to that of Theorem 1 (ii), it is omitted. The limiting
distribution of ℓJ(µn, ϕ) can be approximated by an analogous bootstrap method in Remark 1.
Based on this theorem, we can conduct inference on the Fréchet variance ϕ.

3.3. Bayesian empirical likelihood. This subsection considers quasi Bayesian inference for
the Fréchet means; see e.g. Bhattacharya and Dunson (2010) and McCormack and Hoff (2022)
for nonparametric and empirical Bayes methods on manifold data, respectively. Since our setup
does not assume that X has a distribution in a parametric family, it is not clear how to conduct
Bayesian inference for µ. Our empirical likelihood ℓ(µ) in (2) can be employed as a quasi
likelihood function for quasi Bayesian inference on the generalized Fréchet mean µ (see Lazar,
2003, for the basic idea of Bayesian empirical likelihood). Suppose the researcher has a prior
measure π(µ) on µ ∈ P. The empirical likelihood-based quasi posterior can be given by

P{µ ∈ B|X} =

∫
µ∈B exp(−ℓ(µ)/2− ςnF̃n(µ))dπ(µ)∫
µ∈P exp(−ℓ(µ)/2− ςnF̃n(µ))dπ(µ)

, (5)

for any Borel set B, where X = (X1, . . . , Xn) and {ςn} is a non-negative sequence satisfying
ςn → ∞. The additional term ςnF̃n(µ) is introduced to deal with the situation where the space
P contains multiple solutions for the moment condition Eµ0 [g(X,µ)] = 0. When this moment
condition is satisfied uniquely at µ0, we can set as ςn = 0. Let dP be a metric on P. Concentration
of the empirical likelihood-based posterior can be characterized as follows.

Theorem 4. Let Pµ0 be a probability measure of X with the Fréchet mean µ0. Suppose that
Assumption 1 holds true, P is compact, and Eµ0 [supµ∈P ||g(X,µ)||a] < ∞ for some a > 1. Then
for every ϵ > 0,

(i): if ςn → ∞, it holds

P{µ ∈ P : F̃ (µ)− F̃ (µ0) ≥ ϵ|X} → 0 in Pµ0-probability,

(ii): if ςn = 0, it holds

P{µ ∈ P : ||Eµ0 [g(X,µ)]|| ≥ ϵ|X} → 0 in Pµ0-probability,

(iii): if ςn = 0 and Eµ0 [g(X,µ)] = 0 uniquely at µ0 ∈ P, it holds

P{dP(µ, µ0) ≥ ϵ|X} → 0 in Pµ0-probability.

Part (iii) of this theorem says that when the moment condition Eµ0 [g(X,µ)] = 0 is uniquely
satisfied at µ = µ0, the empirical likelihood-based quasi posterior without adjustment (i.e.,
PEL{µ ∈ B|X} =

∫
µ∈B exp(−ℓ(µ)/2)dπ(µ)/

∫
µ∈P exp(−ℓ(µ)/2)dπ(µ)) achieves posterior consis-

tency to µ0 under the metric dP . When the moment condition is satisfied at multiple µ’s, then
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the posterior PEL{µ ∈ B|X} guarantees concentration only to the set of those multiple solu-
tions containing µ0 (Part (ii) of this theorem). Part (i) of this theorem guarantees posterior
concentration to the argmin set of the population Fréchet function F̃ (·) for a general case.

3.4. Local empirical likelihood. Petersen and Müller (2019) generalized local linear fitting
to the case where the response is a random object and predictors are Euclidean variables, and
developed the local Fréchet regression method to estimate a conditional or localized version
of the Fréchet mean. Indeed our empirical likelihood approach can be extended to deal with
such localized population objects. Let Z ∈ Rk be Euclidean predictors. The generalized local
population and sample Fréchet means are defined as

Ẽ(z) =

{
p ∈ P : F̃ (p; z) = inf

q∈P
F̃ (q; z)

}
, Ẽn(z) =

{
p ∈ P : F̃n(p; z) = inf

q∈P
F̃n(q; z)

}
,

respectively, where F̃ (p; z) = E[ρ̃(p,X)|Z = z] and F̃n(p; z) =
1

nhk

∑n
i=1K

(
Zi−z
h

)
ρ̃(p,Xi) with

a kernel function K and bandwidth h. The object of interest is the generalized local population
Fréchet mean at given z. In this case, Assumption 1 is adapted as follows.

Assumption 4.

(i): {Xi, Zi}ni=1 is independent and identically distributed. For almost every z, Ẽ(z) is
non-empty and contains a unique µz ∈ P such that for every measurable selection µz,n ∈
Ẽn(z), it holds µz,n

p→ µz.
(ii): For an integer r ≥ 2, there exists a neighborhood Ũ of µz that is an m-dimensional

Riemannian manifold, i.e., for a neighborhood U of 0 ∈ Rm, the exponential map expµ :

U → Ũ is a Cr-diffeomorphism satisfying expµz
(0) = µz.

(iii): g(X,µz) :=
dρ̃(expµz (x),X)

dx

∣∣∣
x=0

exists almost surely.

Based on this assumption, a localized version of the empirical likelihood function for the local
Fréchet mean µz can be constructed as

ℓ(µz; z) = −2 max
p1,...,pn

n∑
i=1

log(npi),

s.t. pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

piK

(
Zi − z

h

)
g(Xi, µz) = 0,

and its dual form is

ℓ(µz; z) = 2max
λ

n∑
i=1

log

(
1 + λ′K

(
Zi − z

h

)
g(Xi, µz)

)
.

The asymptotic property of the local empirical likelihood statistic ℓ(µz; z) is obtained as follows.
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Theorem 5. Suppose that Assumption 4 holds true. Additionally assume

1√
nhk

n∑
i=1

{
K

(
Zi − z

h

)
g(Xi, µz)− E

[
K

(
Zi − z

h

)
g(Xi, µz)

]}
d→ N(0, Vz),√

n

hk
E
[
K

(
Zi − z

h

)
g(Xi, µz)

]
→ 0, (6)

1

nhk

n∑
i=1

K

(
Zi − z

h

)2

g(Xi, µz)g(Xi, µz)
′ p→ Vz,

for some positive definite Vz. Then
ℓ(µz; z)

d→ χ2
m.

Standard regularity conditions on the moment function g(Xi, µz) combined with certain re-
quirements on the kernel function K and bandwidth h will be sufficient for (6) to hold. The
second condition in (6) requires undersmoothing to ignore the bias component. Based on Theo-
rem 5, we can conduct empirical likelihood inference on the generalized local population Fréchet
mean µz for each z, which complements the point estimation theory developed in Petersen and
Müller (2019).

3.5. Fréchet mean set. In this subsection, we consider the case where the generalized popula-
tion Fréchet mean set Ẽ in (1) is not a singleton (i.e., Assumption 1 (i) is violated). One way to
adapt our approach in such a scenario is to estimate the subset P̃ := {p ∈ P : E[g(X, p)] = 0},
which contains Ẽ as a subset, based on the empirical likelihood function ℓ(·) in (2).

In particular, by applying the general methodology of Chernozhukov, Hong and Tamer (2007)
to estimate set identified statistical models, the empirical likelihood-based set estimator for
P̃ ⊇ Ẽ is constructed as a level set:

P̂ = {p ∈ P : ℓ(p) ≤ C log n} for some C > 0.

Let dH(A,B) = max {supa∈A (infb∈B d(a, b)) , supb∈B (infa∈A d(a, b))} be the Hausdorff distance
of subsets A,B ⊂ P. Consistency of the set estimator P̂ for P̃ under dH is obtained as follows.

Theorem 6. Suppose that

(i): {Xi}ni=1 is a collection of independent and identically distributed random variables de-
fined on a complete probability space (Ω,F ,P). For each p ∈ P, there exists a neigh-
borhood Ũ of p that is an m-dimensional Riemannian manifold, i.e., for a neighborhood
U of 0 ∈ Rm, the exponential map expp : U → Ũ is a Cr-diffeomorphism satisfying
expp(0) = p with some r ≥ 2.

(ii): For each p ∈ P, g(X, p) :=
∂ρ̃(expp(x),X)

∂x

∣∣∣
x=0

exists almost surely, and E
[
supp∈P ||g(X, p)||2

]
<

∞.
(iii): {g(·, p) : p ∈ P̃} is a P-Donsker class, and infp∈P λmin(E[g(X, p)g(X, p)′]) ≥ c for

some c > 0, where λmin(A) means the minimum eigenvalue of a matrix A.

Then
dH(P̂, P̃)

p→ 0.
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Assumptions (i) and (ii) in Theorem 6 are uniform versions of Assumption 1, but we do not
require uniqueness of the generalized population Fréchet mean. Assumption (iii) arises from
empirical process theory (c.f. Section 2.1 in van der Vaart and Wellner, 1996). In particular, the
requirement that {g(·, p) : p ∈ P̃} is a Donsker class is used to control the stochastic order of the
criterion function ℓ(p) over the identified set P̃. The proof is an adaptation of Chernozhukov,
Hong and Tamer (2007, Theorem 3.1) to the present setup.

4. Simulation

In this section, we conduct a simulation study to evaluate the finite sample performance of
the proposed method. We consider the case, where P and Q are 2-dimensional spheres S2, and
focus on inference for the generalized Fréchet mean with the geodesic intrinsic distance ρ̃ = d

(hereafter, called the Fréchet median) and its square d2 (hereafter, called the Fréchet mean).
We generate an independent and identically distributed sequence {Xi}ni=1 from (i) the von

Mises-Fisher distribution on S2 with the mean direction µ0 = (0, 0, 1)′ and concentration pa-
rameter κ ∈ {1, 2}, or (ii) the two-smeary distribution Q provided in Eltzner and Huckemann
(2019), which is defined as follows. Let X be a random variable distributed on S2 that is uni-
formly distributed on the lower half sphere L2 = {p = (p1, p2)

′ ∈ S2 : p2 ≤ 0} with total mass
α = 4

4+π and on the north pole µ = (0, 0, 1)′ with probability 1 − α. We set n ∈ {200, 500} for
Case (i), and n ∈ {200, 500, 1000, 2000} for Case (ii).

First, we consider inference on the mean/median direction µ0 = (0, 0, 1)′. Figure 1 shows
the sample and population Fréchet means (red and orange points, respectively) with the 95%
empirical likelihood confidence region (red line) of Case (i) with κ ∈ {1, 2} and n = 200. Figure
2 shows the sample and population Fréchet medians (purple and orange points, respectively)
with the 95% empirical likelihood confidence region (red line) of Case (i) with κ ∈ {1, 2} and
n = 200. The black points are observations.
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Figure 1. Sample Fréchet mean (red point) with 95% empirical likelihood con-
fidence region (red line). The orange point is the true mean direction and
the black points are observations of Case (i) with (κ, n) = (1, 200) (left) and
(κ, n) = (2, 200) (right).

Figure 2. Sample Fréchet median (purple point) with 95% EL confidence region
(red line). The orange point is the true mean direction, the red point is the
sample Fréchet mean, and the black points are observations of Case (i) with
(κ, n) = (1, 200) (left) and (κ, n) = (2, 200) (right).
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Second, we consider hypothesis testing for the null H0 : µ = µ0 = (0, 0, 1)′ against the
alternative H1 : µ ̸= µ0. Note that Case (ii) is an example that exhibits two-smeariness for the
Fréchet mean and the Fréchet median is not smeary in this model. We set the significance level
at 5%, and compare the empirical likelihood test based on Theorem 1 (i) and the conventional
Wald test described in Appendix A.2 below. Figure 3 shows empirical sizes and powers of the
empirical likelihood test and Wald test based on the Fréchet mean, and Figure 4 shows empirical
sizes and powers of the empirical likelihood test and Wald test based on the Fréchet median for
Case (i) with µ = (sin θ cos ξ, sin θ sin ξ, cos ξ)′, θ ∈ {0, π

64 ,
2π
64 , . . . ,

16π
64 }, ξ = 0, and κ ∈ {1, 2}.

Figure 5 shows empirical sizes and powers of the empirical likelihood test on the Fréchet mean
and median for Case (ii) with θ ∈ {0, π

16 ,
2π
16 , . . . , π}, µ = (sin θ cos ξ, sin θ sin ξ, cos ξ)′, ξ = 0, and

n ∈ {200, 500, 1000, 2000}. For Case (ii), we do not report the results of the Wald test due to the
erroneous numerical behaviors and lack of theoretical justification. Note that µ0 corresponds to
the case with (θ, ξ) = (0, 0). The number of Monte Carlo repetitions is 1000. Our findings are
summarized as follows:

• For Case (i) on the Fréchet mean, both tests exhibit reasonable size properties, but
the empirical likelihood test is more powerful than the Wald test. The power gain is
particularly large for the less concentrated case, κ = 1.

• For Case (i) on the Fréchet median, we find that the Wald test shows severer size dis-
tortions (around 40%). This distortion is due to the divergence of the Hessian matrix
components. On the other hand, the empirical likelihood test has reasonable size and
power. Therefore, in this case, the proposed empirical likelihood inference clearly out-
performs the conventional Wald test.

• For Case (ii) on the Fréchet mean and median, we only consider the empirical likelihood
test (due to erroneous behaviors of the Wald test), and it can be observed that the
empirical likelihood test gradually improves the power in both the Fréchet mean and
Fréchet median as the sample size increases. Since the Fréchet mean is smeary in Case
(ii), the results provide clear illustrations of the effect of smeariness decreasing the power
of the test.
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Figure 3. Empirical sizes and powers of the EL test (left) and Wald test
(right) based on the Fréchet mean for Case (i) with θ ∈ {0, π

64 ,
2π
64 , . . . ,

16π
64 },

n ∈ {200, 500}, and κ ∈ {1, 2}.

Figure 4. Empirical sizes and powers of the EL test (left) and Wald test
(right) based on the Fréchet median for Case (i) with θ ∈ {0, π

64 ,
2π
64 , . . . ,

16π
64 },

n ∈ {200, 500}, and κ ∈ {1, 2}.
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Figure 5. Empirical sizes and powers of the EL test of Fréchet mean (left) and
Fréchet median (right) for Case (ii) with θ ∈ {0, π

16 ,
2π
16 , . . . , π} and n ∈

{200, 500, 1000, 2000}.

5. Real data analysis

In this section, we apply our empirical likelihood approach to conduct inference on the Fréchet
mean and median of (i) turtle data (a dataset on circle) and (ii) paleomagnetic data (a dataset
on sphere).

5.1. Turtle data. In this subsection, we apply our method to the dataset of directions of 76
female turtles after laying eggs from Mardia and Jupp (2000). This dataset is a motivating
example in Eltzner and Huckemann (2019) for the statistical analysis of generalized Fréchet
means in the presence of smeariness.

Figure 6 shows the plot of the turtle data. Figure 7 presents the 95% confidence regions (red
line) of Fréchet mean (left) and Fréchet median (right). The orange point is the sample Fréchet
mean and the purple point is the sample Fréchet median. In this example, the confidence region
of the Fréchet median is included within the confidence region of the Fréchet mean, and the
sample Fréchet mean lies within the confidence region of the Fréchet median. Figure 8 shows the
plots of the empirical likelihood statistics ℓ(µ) for the Fréchet mean (left) and Fréchet median
(right) of the turtle data. We set µ = (cos θ, sin θ) for θ ∈ {0, π

128 ,
2π
128 , . . . , π}. The red (purple)

horizontal and virtual lines correspond to the critical value q0.95 and the sample Fréchet mean
(median), respectively. One can use these figures for the visualization of confidence regions of
the Fréchet mean/median or Fréchet mean/median sets. In Figure 8, we obtain the disjoint
confidence sets for the Fréchet mean/median. In these cases, we choose the subsets containing
the sample Fréchet mean/median since other sets correspond to local maxima of the sample
Fréchet function as shown in Figure 9.
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Figure 6. Turtle data in Mardia and Jupp (2000).

Figure 7. 95% confidence regions (red line) of the Fréchet mean (left) and the
Fréchet median (right). The orange point is the sample Fréchet mean and the
purple point is the sample Fréchet median.

5.2. Paleomagnetic data. Paleomagnetism provides highly valuable information in earth sci-
ences, including geology (Butler, 1992). Among them, the analysis of virtual geomagnetic poles
(VGPs) serves as crucial data to understand the changes in the positions of geomagnetic poles
from the past to the present.
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Figure 8. Plot of the EL statistics ℓ(µ) for the Fréchet mean (left) and
the Fréchet median (right) of turtle data. We set µ = (cos θ, sin θ), θ ∈
{0, π

128 ,
2π
128 , . . . , π}. The red (purple) horizontal and virtual lines correspond to

the critical value q0.95 and the sample Fréchet mean (median), respectively.

Figure 9. Sample Fréchet function of the Fréchet mean (left) and the Fréchet
median (right) of turtle data.
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Figure 10. 95% confidence regions (red line) of the Fréchet mean (left) and
the Fréchet median (right). The red (purple) point is the sample Fréchet mean
(median), the orange point is the north pole, and the black points are VGP
locations.

In this subsection, we utilize the dataset of VGP positions analyzed in Gallo et al. (2023)
with a sample size n = 689. We estimate the average positions of geomagnetic poles from
60 million years ago to the present using the sample Fréchet mean and the sample Fréchet
median. Additionally, we also computed 95% confidence regions of the population Fréchet mean
and median. Given the observation in Eltzner (2022) that the dataset of VGP positions tends
to exhibit smeariness, it seems prudent to construct a confidence region using our empirical
likelihood method, which is robust to the smeariness.

Figure 10 shows 95% confidence regions (red line) of the Fréchet mean (left) and the Fréchet
median (right). The red (purple) point is the sample Fréchet mean (median), the orange point is
the north pole, and the black points are VGP locations. In this example, the confidence region
of the Fréchet mean and the confidence region of the Fréchet median are not in an inclusion
relationship. Specifically, while the sample Fréchet mean is somewhat distant from the north
pole, the sample Fréchet median is close to it, and its confidence region is very narrow. Figure
11 shows the plots of the EL statistics ℓ(µ) for the Fréchet mean (left) and the Fréchet median
(right) of VGP data and we obtain the disjoint confidence sets for the Fréchet mean/median. In
these cases, we selected the subsets containing the sample Fréchet mean/median since other sets
correspond to local maxima or minima of the sample Fréchet functions as shown in Figure 12. We
set µ = (sin θ cos ξ, sin θ sin ξ, cos θ)′ for θ ∈ {0, π

64 ,
2π
64 , . . . , π} and ξ ∈ {0, π

128 ,
2π
128 , . . . , 2π − π

128}.
As these figures show, the shapes of the empirical likelihood confidence regions are flexibly
determined by the data.
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Figure 11. Plots of the EL statistics ℓ(µ) for the Fréchet mean (left) and the
Fréchet median (right) of VGP data. We set µ = (sin θ cos ξ, sin θ sin ξ, cos θ)′,
θ ∈ {0, π

64 ,
2π
64 , . . . , π}, ξ ∈ {0, π

128 ,
2π
128 , . . . , 2π − π

128}.

Figure 12. Sample Fréchet function of the Fréchet mean (left) and the Fréchet
median (right).

6. Conclusion

This paper introduces an empirical likelihood approach to conduct inference on the Fréchet
mean and related population objects used to characterize distributions of data on Riemann-
ian manifolds. We investigate the asymptotic properties of the empirical likelihood statistic
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to test the simple and composite null hypotheses, and present several generalizations including
two-sample test, inference on the Fréchet variance and local Fréchet regression, quasi Bayesian
inference, and estimation of the Fréchet mean set. Our numerical studies via Monte Carlo sim-
ulations and real data examples show that our empirical likelihood approach can be a useful
complement to the existing inference approach for Riemannian manifolds.
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Appendix A. Appendix

In this appendix, we will obey the following notation. For any positive sequences an and bn,
we write an ≲ bn if there is a positive constant C > 0 independent of n such that an ≤ Cbn for
all n, an ∼ bn if an ≲ bnand bn ≲ an.

A.1. Examples. Here we provide some popular examples of Riemannian manifolds. See Bhat-
tacharya and Patrangenaru (2003, 2005, 2014) for other examples and their applications.

Example 1. [m-dimensional sphere] Let Sm = {p ∈ Rm+1 : ∥p∥ = 1} be the m-dimensional
sphere with the geodesic distance arccos(p′q) for p, q ∈ Sm. The tangent space at a point p ∈ Sm

is TpSm = {x ∈ Rm+1 : x′p = 0}. In this case, the exponential map expp(·) : TpSm → Sm is
given by expp(x) = cos(∥x∥)p + sin(∥x∥) x

∥x∥ . Spherical data arise in many research fields such
as astrophysics, biology, geology, material science, meteorology, and political science. For those
applications, we refer to Watson (1983), Briggs (1993), Mardia and Jupp (2000), Franke et al.
(2015) and Ley and Verdebout (2017). In our numerical illustrations, we apply our empirical
likelihood methods to the analysis of several real datasets on the circle S1 and two-dimensional
sphere S2.

Example 2. [Planar shape space] Consider the Kendall’s planer shape space Σk
2, where k

and 2 denote the number of landmarks and the Euclidean dimension on which landmarks
lie, respectively (Kendall, 1984). An element of Σk

2 is a set of k points in the plane (not all
equal), modulo similarity transformation in R2, i.e., translation, rotation and scaling. Let
Sk
2 = {u = (u1, . . . , uk)

′ ∈ Ck :
∑k

i=1 ui = 0, u′ū = 1} be the pre-shape sphere which is
the unit sphere in the k-dimensional complex space. Here ū is the complex conjugate of u.
The tangent space of Sk

2 is TzS
k
2 = {v ∈ Ck : v′1k = 0,Re(z′v̄) = 0}, where 1k is the

column vector of ones of size k and Re(w) is the real part of the complex number w. The
elements of the planer shape space Σk

2 can be represented as equivalence classes π(z) where
π(z) := [z] = {eiθz : 0 ≤ θ < 2π} is a map from Sk

2 to Σk
2. Note that π is a Riemannian submer-

sion and so the tangent space T[z]Σ
k
2 is isometric with the subspace of TzS

k
2 called the horizontal

subspace Hz = {v ∈ Ck : z′v̄ = 0, v′1k = 0}. Let ι[z] : T[z]Σ
k
2 → Hz denote the isometric

map. Then the exponential map exp[z](·) : T[z]Σ
k
2 → Σk

2 is given by exp[z](x) = π ◦ expz ◦ι[z](x)
where expz is the exponential map of Sk

2 . The geodesic distance dg between [x], [y] ∈ Σk
2 is given

by dg([x], [y]) = arccos(|x′ȳ|). For applications of (general) shape space to archaeology, astron-
omy, geography, morphometrics, medical diagnostics, and physical chemistry, we refer to Kendall
(1989), Small (1996), Bookstein (1997), Bhattacharya and Patrangenaru (2014) and Dryden and
Mardia (2016).

Example 3. [Real projective space] Consider the real projective space RPm. The elements of
RPm can be represented as equivalence classes [x] = [x1 : x2 : · · · : xm+1] = {λx : λ ̸= 0}
where x = (x1, . . . , xm+1)

′ ∈ Rm+1\{0}. Since any line through the origin in Rm+1 is uniquely
determined by its points of intersection with the unit sphere Sm, one may identify RPm with
Sm/G, with G comprising the identity map and the antipodal map p 7→ −p. The geodesic
distance dg between [x], [y] ∈ RPm is given by dg([x], [y]) = arccos(|x′y|). Let T[z]RPm be the
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tangent space of RPm. The exponential map of RPm at [z] is exp[z](x) = π ◦ expz ◦ι[z](x),
where ι[z] : T[z]RPm → TzSm is an isometric map, expz is the exponential map of Sm, and
π : Sm ∋ z 7→ [z] ∈ RPm is a Riemannian submersion. For applications of the real projective
space to computer vision, geology, paleomagnetism, robotics, and sociology, we refer to Beran
and Fisher (1998), Mardia and Jupp (2000), Haines and Wilson (2008) and Glover et al.(2012).

A.2. Description of Wald test for simulation . Let p = (sin θ cos ξ, sin θ sin ξ, cos θ)′. Follow-
ing Bhattacharya and Patrangenaru (2005, Theorem 2.1), we have

√
n logp(µn)

d→ N(0,Λ−1ΣΛ−1)

where µn is a sample Fréchet mean, logp : S2 → R2 is the logarithmic map defined as

logp(x) = (e1, e2)
′C ′

θ arccos(p
′x)

x− (p′x)p

∥x− (p′x)p∥
,

where e1 = (1, 0, 0)′, e2 = (0, 1, 0)′, ∥ ·∥ is the Euclidean norm on R3, Cθ is a 3×3 matrix defined
as

Cθ =

 cos θ cos ξ − sin ξ sin θ cos ξ

cos θ sin ξ cos ξ sin θ sin ξ

− sin θ 0 cos θ

 ,

and Λ and Σ are defined as

Λ = E

[
∂2

∂x∂x′
arccos2((expp(x))

′X)

∣∣∣∣
x=(0,0)′

]
,

Σ = E[g(X1, p)g(X1, p)
′]

= E

[(
∂

∂x
arccos2((expp(x))

′X)

∣∣∣∣
x=(0,0)′

)(
∂

∂x
arccos2((expp(x))

′X)

∣∣∣∣
x=(0,0)′

)′]
.

Then we define the Wald statistic as

Wn(p) := n(logp(µn))
′(Λ̂Σ̂−1Λ̂) logp(µn),

where Λ̂ and Σ̂ are sample counterparts of Λ and Σ, respectively.

A.3. Proof of Theorem 1.

Proof of (i). Under the assumption E[||g(X,µ)||2] < ∞ (Assumption 1 (iii)), the Borel-Cantelli
argument as in Owen (1988) imply max1≤i≤n ∥g(Xi, µ)∥ = op(n

1/2). An analogous argument as
in Owen (2001, Chapter 11) yields the quadratic expansion

ℓ(µ) =

(
1√
n

n∑
i=1

g(Xi, µ)

)′(
1

n

n∑
i=1

g(Xi, µ)g(Xi, µ)
′

)−1(
1√
n

n∑
i=1

g(Xi, µ)

)
+ op(1).

Therefore, under Assumption 1 (iii), the central limit theorem 1√
n

∑n
i=1 g(Xi, µ)

d→ N(0,E[g(X,µ)g(X,µ)′])

and the law of large numbers 1
n

∑n
i=1 g(Xi, µ)g(Xi, µ)

′ p→ E[g(X,µ)g(X,µ)′] yields the conclu-
sion.

Proof of (ii). Let G(X,x) =
(
∂g∗(X,expµ(x))

∂x′

)′
. An expansion around xn = 0 yields

g∗(Xi, µn) = g∗(Xi, expµ(xn)) = g∗(Xi, µ) +G(Xi, x̃)
′xn, (7)
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where x̃ is a point on the line joining xn and 0. Thus, the Borel-Cantelli argument as in Owen
(1988) and xn = Op(n

−1/2) (Assumption 2 (ii)) imply max1≤i≤n ∥g∗(Xi, µn)∥ = op(n
1/2), and

an analogous argument as in Owen (2001, Chapter 11) yields the quadratic expansion

ℓ∗(µn) =

(
1√
n

n∑
i=1

g∗(Xi, µn)

)′

V̂ −1

(
1√
n

n∑
i=1

g∗(Xi, µn)

)
+ op(1), (8)

where V̂ = 1
n

∑n
i=1 g

∗(Xi, µn)g
∗(Xi, µn)

′.
A uniform law of large numbers (Lemma 2.4 of Newey and McFadden, 1994) implies

sup
x∈N

∥∥∥∥∥ 1n
n∑

i=1

g∗(Xi, expµ(x))g
∗(Xi, expµ(x))

′ − E[g∗(Xi, expµ(x))g
∗(Xi, expµ(x))

′]

∥∥∥∥∥ p→ 0,

sup
x∈N

∥∥∥∥∥ 1n
n∑

i=1

G(Xi, x)− E[G(Xi, x)]

∥∥∥∥∥ p→ 0.

Since µn
p→ µ = µ∗ under H0, we obtain

V̂
p→ E[g∗(Xi, µ

∗)g∗(Xi, µ
∗)′],

1

n

n∑
i=1

G(Xi, x̃)
p→ E[G(X, 0)]. (9)

Thus, by (7), it holds that under H0,

1√
n

n∑
i=1

g∗(Xi, µn) =
1√
n

n∑
i=1

g∗(Xi, µ
∗) +

(
1

n

n∑
i=1

G(Xi, x̃)

)′
√
nxn

d→ N

(
0, [Im∗ : E[G(X, 0)]′]Σ

[
Im∗

E[G(X, 0)]

])
. (10)

The conclusion follows by (9) and (10).
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A.4. Proof of Theorem 2. The proof is analogous to the one for Theorem 1 (ii). As in (8),
the statistic L can be expanded as

L =

(
1√
n

n∑
i=1

g(Xi, µn)

)′

V̂ −1

(
1√
n

n∑
i=1

g(Xi, µn)

)

+

 1
√
n1

n1∑
j=1

g(X1j , µn)

′

V̂ −1
1

 1
√
n1

n1∑
j=1

g(X1j , µn)

+ op(1)

=

{
1√
n

n∑
i=1

g(Xi, µ) +

√
1

1 + ρ

(
1

n

n∑
i=1

G(Xi, x̃)

)′
√
n+ n1xn

}′

V̂ −1

×

{
1√
n

n∑
i=1

g(Xi, µ) +

√
1

1 + ρ

(
1

n

n∑
i=1

G(Xi, x̃)

)′
√
n+ n1xn

}

+

 1
√
n1

n1∑
j=1

g(X1j , µ) +

√
ρ

1 + ρ

 1

n1

n1∑
j=1

G(X1j , x̃)

′
√
n+ n1xn


′

V̂ −1
1

×

 1
√
n1

n1∑
j=1

g(X1j , µ) +

√
ρ

1 + ρ

 1

n1

n1∑
j=1

G(X1j , x̃)

′
√
n+ n1xn

+ op(1),

where V̂ = 1
n

∑n
i=1 g(Xi, µn)g(Xi, µn)

′, V̂1 =
1
n1

∑n1
j=1 g(X1j , µn)g(X1j , µn)

′, G(X,x) =
(
∂g(X,expµ(x))

∂x′

)′
,

and the second equality follows from the expansions g(Xi, µn) = g(Xi, expµ(xn)) and g(X1j , µn) =

g(X1j , expµ(xn)) around xn = 0.
Therefore, the conclusion follows by the asymptotic normality assumed in (4) and the uniform

law of large numbers for 1
n

∑n
i=1G(Xi, x) and 1

n1

∑n1
j=1G(X1j , x) over a neighborhood x ∈ N .

A.5. Proof of Theorem 4.

Proof of (i). Let λ(µ) = Eµ0 [g(X,µ)], where Eµ0 [·] is expectation under X ∼ Pµ0 . Pick any
ϵ, ϵ1 > 0, and define Bc

0 = {µ ∈ P : F̃ (µ) − F̃ (µ0) ≥ ϵ}, A = {µ ∈ P : λ(µ)′λ(µ) ≤ ϵ1}, and
Ac = P \ A. Since we have

P{µ ∈ Bc
0|X} ≤ P{µ ∈ Ac|X}+ P{µ ∈ Bc

0 ∩ A|X},

it is sufficient to show that (I) P{µ ∈ Ac|X} → 0 and (II) P{µ ∈ Bc
0 ∩ A|X} → 0 in Pµ0-

probability.
First, we show (I). Let ḡ(µ) = n−1

∑n
i=1 g(Xi, µ) and Âc = {µ ∈ P : λ(µ)′ḡ(µ) > ϵ1/2}.

Decompose

P{µ ∈ Ac|X} ∼
∫
µ∈Ac

exp(−ℓ(µ)/2) exp(−ςn{F̃n(µ)− F̃n(µn)})dπ(µ)

≤
∫
µ∈Ac

exp(−ℓ(µ)/2)dπ(µ)

≤
∫
µ∈Âc

exp(−ℓ(µ)/2)dπ(µ) +

∫
µ∈Ac∩Â

exp(−ℓ(µ)/2)dπ(µ)

=: T1 + T2,
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where the second inequality follows from F̃n(µ) − F̃n(µn) ≥ 0 for every µ ∈ P. For T2, the
uniform law of large numbers (supµ∈P ||ḡ(µ)− λ(µ)|| → 0 in Pµ0-probability) guarantees T2 → 0

in Pµ0-probability. For T1, note that

−1

2
ℓ(µ) = min

λ
−

n∑
i=1

log(1 + λ′g(Xi, µ)) ≤ −
n∑

i=1

log(1 + n−1/aλ(µ)′g(Xi, µ))

≤ −n−1/aλ(µ)′
n∑

i=1

g(Xi, µ) +
1

2
n−2/aλ(µ)′

n∑
i=1

g(Xi, µ)g(Xi, µ)
′

(1 + r(Xi, µ))2
λ(µ)

≲ −n1−1/aλ(µ)′ḡ(µ) +
1

2
n1−2/aλ(µ)′Eµ0 [g(X,µ)g(X,µ)′]λ(µ)

≲ −n1−1/aλ(µ)′ḡ(µ), (11)

where the second inequality follows from an expansion and r(Xi, µ) is a point on the line join-
ing λ(µ)′g(Xi, µ) and 0, the first wave inequality follows from the uniform law of large num-
bers (supµ∈P ||n−1

∑n
i=1 g(Xi, µ)g(Xi, µ)

′ − Eµ0 [g(X,µ)g(X,µ)′]|| → 0 in Pµ0-probability) and
max1≤i≤n supµ∈P ||g(Xi, µ)|| = op(n

1/a). Thus, it holds

T1 ≲
∫
µ∈Âc

exp(−n1−1/aλ(µ)′ḡ(µ))dπ(µ) ≤ exp(−n1−1/aϵ1/2) → 0, (12)

in Pµ0-probability, and we obtain (I).
Next, we show (II). Observe that

P{µ ∈ Bc
0 ∩ A|X} ∼

∫
µ∈Bc

0∩A
exp(−ℓ(µ)/2) exp(−ςn{F̃n(µ)− F̃n(µn)})dπ(µ)

≲
∫
µ∈Bc

0∩A
exp(−n1−1/aḡ(µ)′ḡ(µ)) exp(−ςn{F̃n(µ)− F̃n(µn)})dπ(µ)

≤
∫
µ∈Bc

0∩A
exp(−ςn{F̃n(µ)− F̃n(µn)})dπ(µ),

where the wave inequality follows from the same argument as in (11) by replacing “λ(µ)” with
“ ḡ(µ)”, and the inequality follows from ḡ(µ)′ḡ(µ) ≥ 0 for every µ ∈ P. Now we have∫

µ∈Bc
0∩A

exp(−ςn{F̃n(µ)− F̃n(µn)})dπ(µ)

≤
∫
µ∈Bc

0

exp(−ςn{F̃n(µ)− F̃n(µ0)})dπ(µ)

=

∫
µ∈P:F̃ (µ)−F̃ (µ0)≥ϵ

exp(−ςn{F̃n(µ)− F̃n(µ0)})dπ(µ)

≤
∫
µ∈P:F̃ (µ)−F̃ (µ0)≥ϵ,|F̃n(µ)−F̃ (µ)|<ϵ/4,|F̃n(µ0)−F̃ (µ0)|<ϵ/4

exp(−ςn{F̃n(µ)− F̃n(µ0)})dπ(µ)

+

∫
µ∈P:|F̃n(µ0)−F̃ (µ0)|≥ϵ/4

exp(−ςn{F̃n(µ)− F̃n(µ0)})dπ(µ)

+

∫
µ∈P:|F̃n(µ)−F̃ (µ)|≥ϵ/4

exp(−ςn{F̃n(µ)− F̃n(µ0)})dπ(µ)

=: T3 + T4 + T5,

26



where the first inequality follows from F̃n(µn) ≤ F̃n(µ0). Since supµ∈P |F̃n(µ) − F̃ (µ)| → 0 in
Pµ0-probability, it holds T4 → 0 and T5 → 0 in Pµ0-probability. Furthermore,

T3 ≤
∫
µ∈P:F̃n(µ)−F̃n(µ0)≥ϵ/2,

exp(−ςn{F̃n(µ)− F̃n(µ0)})dπ(µ) ≤ exp(−ςnϵ/2) → 0,

in Pµ0-probability. Combining these results, we obtain (II). Therefore, the conclusion follows.

Proof of (ii). It follows from the proof of Part (i) of this theorem. In particular, the results in
(11) and (12) yield the conclusion.

Proof of (iii). If Eµ0 [g(X,µ)] = 0 uniquely at µ0 ∈ P, then the inequality dP(µ, µ0) ≥ ϵ implies
||Eµ0 [g(X,µ)]|| ≥ ϵ1 for some ϵ1 > 0. Thus Part (ii) of this theorem yields the conclusion.

A.6. Proof of Theorem 5. Pick any z. As in (8), the statistic ℓ(µz; z) can be expanded as

ℓ(µz; z) =

{
1√
nhk

n∑
i=1

K

(
Zi − z

h

)
g(Xi, µz)

}′

V̂ −1
z

{
1√
nhk

n∑
i=1

K

(
Zi − z

h

)
g(Xi, µz)

}
+op(1),

where V̂z = 1
nhk

∑n
i=1K

(
Zi−z
h

)2
g(Xi, µz)g(Xi, µz)

′. Then the conclusion follows from the as-
sumptions in (6).

A.7. Proof of Theorem 6. As in (8), the empirical likelihood function ℓ(p) can be uniformly
approximated as

sup
p∈P

|n−1ℓ(p)−Qn(p)|
p→ 0,

where Qn(p) =
{
n−1

∑n
i=1 g(Xi, p)

}′ (
n−1

∑n
i=1 g(Xi, p)g(Xi, p)

′)−1 {
n−1

∑n
i=1 g(Xi, p)

}
. Thus,

it is sufficient for the conclusion to verify the conditions in Chernozhukov, Hong and Tamer
(2007, Theorem 3.1) providing a generic consistency result for a level set estimator:

sup
p∈P

|Qn(p)−Q(p)| p→ 0, sup
p∈P̃

nQn(p) = Op(1), P̃ = argmin
p∈P

Q(p), (13)

where Q(p) = E[g(X, p)]′ (E[g(X, p)g(X, p)′])−1 E[g(X, p)].
The first condition in (13) is verified by applying the uniform law of large numbers

sup
p∈P

∣∣∣∣∣ 1n
n∑

i=1

g(Xi, p)− E[g(X, p)]

∣∣∣∣∣ p→ 0, sup
p∈P

∣∣∣∣∣ 1n
n∑

i=1

g(Xi, p)g(Xi, p)
′ − E[g(X, p)g(Xi, p)

′]

∣∣∣∣∣ p→ 0,

under Assumptions (i)-(ii) in Theorem 6. The second condition in (13) is verified by Assumptions
(iii) in Theorem 6. Finally, the third condition in (13) is satisfied because Q(p) = 0 if and only
if p ∈ P̃. Therefore, the conclusion follows by Chernozhukov, Hong and Tamer (2007, Theorem
3.1).
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